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Grid turbulence near a moving wall 
By N. H. THOMAS? AND P. E. HANCOCK 

Department of Aeronautics, Imperial College, London 

(Received 3 November 1976) 

Decaying grid turbulence was passed over a wall moving a t  the stream speed. For the 
high Reynolds number of the experiment, the field due to the wall constraint on the 
normal component of the velocity fluctuations is found to extend further into the flow 
than the influence of the viscous boundary condition on the tangential-component 
fluctuations. Measurements of the variances, length scales and’ spectra of the three 
velocity components of the turbulence are compared with the results of a previous 
experiment and with the theoretical predictions for an idealization of the flow. 
A simple model for some departures from the theory is proposed. 

~~~ 

1. Introduction 
The experiment described below, in which decaying grid turbulence was passed 

over a wall moving at the stream speed, serves as a realization of the simplest bounded 
turbulence field: ‘turbulence in a box ’. For, invoking Taylor’s frozen-flow hypothesis 
and supposing the grid turbulence to be essentially isotropic, we have an analogue 
of the boundary region established when an infinite flat plate is suddenly inserted, 
without relative mean motion, into a pre-existing field of homogeneous isotropic 
turbulence. Hunt & Graham (1  978) have described the linearized asymptotic solution 
valid a t  large Reynolds number. Physically, this exhibits an outer kinematic region 
characterized by the length scale L, of the external turbulence, in which the normal 
component of the velocity fluctuations is inhibited by the wall constraint, and an 
inner viscous region of typical thickness 8, N (vt)*, where u is the kinematic viscosity 
and t the elapsed time. The theory is valid for small 8,/L,. 

The experiment, in which t = x’fU, where x‘ is measured from the leading edge of the 
boundary region and U is the uniform mean velocity, affords a substantial test of the 
Hunt & Graham solution. We describe measurements of the time-averaged variances 
( u ’ ~ ,  v ‘ ~ ,  w ’ ~ )  of the fluctuation velocity components (u‘, v’, w’), the one-dimensional 
frequency spectra (eU, a,, 0,) of these components and the longitudinal integral 
scales defined by 

--- 

- - - 
U U U 

Lu = = 0, (n = O), L, = = 0, (n = O ) ,  L, = = 0, (n = O), 
4u’2 4v’2 4W‘Z 

where n is the frequency. The subscript e will denote the values in the external stream. 
It is shown in 5 3 that the normal (0’2) component is in quantitative agreement with the 
theory but the transverse (3) component is essentially uninfluenced by the wall, in 

t Present address : Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge. 
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FIQURE 1. Schematic diagram of the wind tunnel, turbulence grid and endless belt arrangement, 
and definition sketch (the transverse co-ordinate z, not shown, has the centre-plane as origin). 

contrast to the theoretically predicted amplification. The local amplification of the 
longitudinal (&) component, which is greater than that predicted, grows with in- 
creasing downstream distance. A simple explanation, in terms of the streamwise 
inhomogeneity of the decaying grid turbulence, is proposed in $4. 

The present studies, in which the grid Reynolds number R M  was approximately 106, 
where R M  = MG/v and M is the mesh width, are complementary to those conducted by 
Uzkan & Reynolds (1967), in which RM was about 5000. Essentially the same methods 
of producing a shear-free mean flow were employed (see $2). Uzkan & Reynolds 
measured the variance and spectrum of the u’-component fluctuation and found 
a viscous layer with 8, II 1-8(vx’/G)*, but no explicit evidence for an outer kinematic 
region. Now, for large x/M, typically L,, II O.l(Mx)*, where x is measured from the 
grid, so if x 2: x‘, then Sv/-Lue II (300/RaI)* and is therefore approximately 0.25 for 
Uzkan & Reynolds’ experiment and 0.05 for ours. Further discussion of Uzkan & 
Reynolds’ results is presented in Q 4. 

Hunt & Graham have compared their solution with the results of these moving-wall 
experiments and with measurements in a decayin,g turbulent stream by Graham (1975) 
and Petty (unpublished; see Hunt & Graham) near a flat plate and by Cooke (1971; 
see Hunt & Graham) near a wind-tunnel wall. Each study showed that outside the 
conventional mean-flow boundary layer, the v‘ variance decreased towards the wall 
as predicted by the theory. Graham’s results, obtained near a mean-flow boundary 
layer of thickness small compared with L,, compare well with those currently obtained 
(see $ 3 ) .  This supports the view that, for a sufficiently high Reynolds number, the 
structure of the outer wall region is independent of the inner region even if the latter 
is a fully turbulent mean-flow boundary layer. 

A practical application of the results is to the effects of free-stream turbulence on 
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boundary layers when the free-stream length scale, as is usual, exceeds the boundary- 
layer thickness. In  these cases, an outer kinematic region exists and the effective values 
of the turbulence parameters are not the external-stream values. Recent reviews of 
the problem of turbulent boundary layers with free-stream turbulence have been 
given by Green (1972) and Bradshaw (1974). 

DISA 55D35 
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- 

2. Procedure 
The experiments were performed in a low-speed wind tunnel with a 5 x af t  

(1.5 x 1.2 m) working section 7ft (2.1 m) long, with corner fillets. The floor of the work- 
ing section was replaced by an endless belt on rollers, with a suction-box assembly 
upstream (figure 1). The turbulence was generated by biplanar grids of rectangular- 
section bars with solidities of 0.4. The mesh widths were 3 in. (7.6 em) and 6 in. (15.2 em) 
respectively for the grids hereinafter referred to as grids A and B. The flow was studied 
at  distances 168cm and 193cm downstream of grid A and 193cm downstream of 
grid B. These stations are referred to below by their nominal downstream distances 
in grid mesh widths: 22M, 2 5 M  and 13M respectively. A schematic diagram and defini- 
tion sketch are shown in figure 1. 

The belt, which was smooth except for a diagonal lap joint approximately 0.003 em 
thick, was driven by a constant-speed motor at  approximately 13ms-l. The belt 
speed was measured by a tachometer and also by a stroboscope focused on each roller; 
no slip was observed. A distribution of suction was applied through the backing 
plate to hold the belt flat. Frictional heating a t  this boundary generated a temperature 
rise of 8" C. 

A bleed duct 30cm downstream of the grid absorbed the tunnel boundary layer. 
The flow onto the moving belt was controlled by a leading-edge plate with suction 
through the porous surface and through the gap near the upstream roller (see figure 1) .  
Using a tuft probe for visualization, the camber and incidence of the plate were 
adjusted to give smooth flow conditions. The size of the suction gap was set to minimize 
the mean shear at  the downstream measurement station. This procedure may have 
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resulted in small differences in the configurations for the grid A study and the grid B 
study; the latter was performed a t  a later date. 

The turbulence was measured by hot-wire anemometers. A diagram of the com- 
ponents is presented in figure 2. The probes were calibrated in the flow remote from 
the tunnel boundaries and ‘best fit’ King’s law relations were used to derive the 
fluctuation velocities. The mean voltages of the two wires on a given cross-wire probe 
were matched over the calibration range and a sum-and-difference unit was employed 
to obtain fluctuating voltages proportional to the longitudinal and lateral components 
of the turbulence velocity fluctuations, assuming the wires angles to be 45’. This 
assumption proved to be inadequate and corrections were later incorporated into 
the data reduction procedure; for details see Hancock & Thomas (1977). 

The variances of the voltage fluctuations were measured by a commercial r.m.s. 
meter (figure 2). The recorded signals were later digitally sampled for 20s a t  a rate 
of 2000 s-l and Fourier transformed, using a fast algorithm described by Davies (1974), 
in blocks of 1024 samples. The effective ‘filter’ bandwidth was therefore 2 Hz and the 
total record length was 40 000 data points. No corrections for variations of the hot-wire 
sensitivities with spatial variations of air temperature were considered, but it was 
deduced from a comparison of the results of a Pitot-tube traverse and the mean voltage 
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FIQURE 4. Transverse distributions of r.m.8. fluctuation velocities normalized by values on z = 0. 
(a) x /M = 25, y = 0.5cm. ( b )  x /M = 25, y = 7.6cm. (c) x /M = 22, y = 7.6cm. 0, (u")*; A, (v")). 
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outputs of the anemometers that any thermal boundary layer created by the tempera- 
ture difference between the belt and the stream was essentially confined to a region 
closer to the wall than the data presented here. 

3. Results 
Any effects of the streamwise mean velocity variation, estimated as 0-1 yo between 

the measuring stations, are assumed to be negligible. Transverse distributions of mean 
velocity at  heights of 0.2 in. (0.5 cm) and 3 in. (7.6 cm) are shown in figure 3. Variations 
of less than f 2 yo over f 10 cm are exhibited. Note that the necessary uniformity of 
speed a t  the wall does not suppress variations, presumably caused by the grid, a t  
a height of 0-5 cm. 

Figure 4 presents some transverse distributions of the r.m.s. values (u'")* and (v'2)* 
of the u' and v' fluctuations for grid A only. Variations are typically less than 5 yo over 
distances of 5 10 cm from the centre-plane. The differences between the distributions 
at heights of 0.5 cm and 7.6 cm at the 25M station may be due to a small inclination of 
the traverse relative to the wall. 

Figure 5 shows mean velocity profiles obtained in the central plane at the 13M and 
25M stations with minimized mean shear and with a nominal difference of 5 yo 
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FIGURE 5.  Mean velocity profiles at z = 193 cm showing the effects of a mismatch between the 
wall and stream speeds. Grid A experiment ( z /M = 25): (a) without grid; ( b )  with grid. Grid B 
experiment ( r / M  = 13): ( c )  without grid; ( d )  with grid. 

between the wall and stream speeds. For the experiment with grid A ,  the velocity is 
uniform to within 1 yo for 0 < y < 7.5 em with the grid present and uniform to 
within 4 yo for 0 < y < 10 ern with the grid removed. For the grid B study, there is no 
significant gradient up to y = 5 em but a 3 yo change between y = 5 em and y = 10 em. 
Here the measurement station is at only 13M and the gradient may well be due to 
grid-generated shear. With either grid in the tunnel, the wall shear field produced by 
deliberately mismatching the speed does not extend beyond y N 0.5 em, which is in 
agreement with our earlier observation on the transverse non-uniformities. 

Values of the r.m.s. velocity fluctuations obtained at the 25M station with the wall 
and stream speeds nominally equal and with a k 5 % mismatch between them are 
shown in figure 6. No significant differences between the three cases can be discerned 
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- FIQ~RE 6. Turbulence intensities ( z ) * / Z  and (z)* /Z at z = 193cm. Grid A: 0, Z, = Ze; A, - 
= 045%,; V, %, = 1.O5ge; +, single-wire probe. No grid: 0, (da)* /Z;  D ,  ( v ’ ~ ) ~ / U .  

and we conclude that any influence on the turbulence is confined to the region of 
significant mean shear. Values of (u’”)* obtained from a single wire agree to better 
than 5% with the cross-wire measurements. Figure 6 also shows the r.m.s.profiles 
obtained in the absence of the grid. This turbulence, probably generated near the 
leading edge, is presumably uncorrelated with the grid turbulence and contributes an 
error of less than about 5 yo. 

Figure 7 presents the variances (zc’~, v ’ ~ ,  w ’ ~ )  normalized on their external-stream 
values (@, vt2, wt2) as functions of yfL,,, where L, is the external longitudinal integral 
scale. The results for the normal (p) component correlate well and are supported by 
Graham’s results for large-scale turbulence streaming past a flat-plate turbulent 
boundary layer. Figure 7 also shows the theoretical solution of Hunt & Graham. We 
observe that very good agreement is obtained if the reduced distance is based on the 
normal-component longitudinal integral scale L,,, which was measured as O.4Lw for 
the present grid turbulence rather than the value 0*5L, for the isotropic field assumed 
in the analysis. Over the range of heights used in the present study, the transverse 
( ~ ‘ 2 )  component varies only slightly towards the wall, the variation decreasing with 
downstream distance. Hunt & Graham’s solution for homogeneous isotropic external 
turbulence considerably overpredicts the values near the wall. The longitudinal (3) 
component increases towards the wall, the amplification growing significantly with 
downstream distance. The results a t  13M are in reasonable agreement with the theory 
but local scaling is clearly inadequate for a description of the downstream evolution. 
Further discussion of this behaviour will be given in $4. 

- -- 
--- 

- 
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FIGURE 7. Variances of fluctuation velocities normalized on external-stream values as functions of 
yEue. (a) u'z/uza. (6) W ' ~ / W : ~ .  (c) v'~/v~~. A, x /M = 13, (uia)*/Z = 0.0775, (?)*/% = 0-0700, 
('uc 'a ) * I V - - 0.0700; - 0, r / M  = 22, (uLa)*/;"i = 0.0525, (F)) /Z = 0.0483, (F)f/E = 0.0483; 0, 
x /M = 25, (u:)*/Z = 0.0425, @)*F = 0.0380, (@/Z = 0.0380; + , experiment of Graham 
(1975); -, theory of Hunt & Graham (1978); ---, W ' ~ / W ?  ws. 0.4y/Lve. 
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Length-scale profiles derived from the frequency spectra are shown in figure 8. The 
scatter hides any trends with downstream distance. The normal-component length 
scale L, decreases monotonically towards the wall and appears to extrapolate to zero 
at  the wall, in agreement with the theoretical solution. The transverse-component 
length scale L, increases to a measured maximum amplification of 1.6 times the 
external value at the measurement position nearest the wall. This is consistent with the 
theory, which predicts a wall scale of twice the external-stream value. The longitudinal- 
component length scale L,, appears to rise slightly (5  yo), then decreases monotonically 
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FIGURE 8. Longitudinal integral scales normalized on external-stream values as functions of 
y/L,,.  (a )  Lu/L,,. ( b )  L,/L,,. ( c )  L,,/L,,,. A, x / M  = 13, L,,/M = 0.393, L,,/M = 0.157, 

L,,/M = 0.633, L,,/M = 0.253, L,JM = 0.253; -, theory of Hunt & Graham (1978). 
L,JM = 0.157; 0, x / M  = 22, L,,/M = 0.583, L,,/M = 0.233, L,,/M = 0.233; 0, x / M  = 25, 

to a measured minimum of 0.5 Lue. The theoretical result is shown to be in reasonable 
agreement for y/Lue > 0.1 but the theoretical value at the wall is #Lw. 

One-dimensional frequency spectra are displayed in figure 9. In agreement with 
the theory, the high frequency ranges are relatively unaffected by the presence of the 
wall, with the exception of the longitudinal component within an inner region of 
thickness approximately 0.25Lue, where the energy density grows towards the wall and 
increases with downstream distance. The dominant characteristic of the low frequency 
range is the decrease in the normal-component energy towards the wall, which is in 
good agreement with the theoretical solution. The gain in low frequency energy density 
of the transverse component also conforms with the theory, but the reduction found in 
the intermediate frequency range is not predicted. The low frequency energy density 
of the longitudinal component increases towards the wall and then decreases within 
the inner region referred to above, while the theoretical solution predicts the low 
frequency asymptote to be independent of the normal distance y. The results at  13M 
generally support the theory 
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4 b  
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4. Discussion 
The present configuration, in contrast to that used by Uzkan & Reynolds, has 

a bleed duct upstream of the moving wall and this ensures removal of any 'horseshoe' 
trailing vortex structures arising where the tunnel boundary layer flows between the 
bars of the grid. Uzkan & Reynolds' measurements do not establish the degree of 
uniformity of the mean flow close to the surface at the downstream study stations. 
Cooke's measurements near a wind-tunnel wall may also have been influenced by the 
presence of horseshoe vortices. On the other hand, the present arrangement may have 
introduced some small streamline curvature in the entry zone and an associated turbu- 
lence distortion field. No flow measurements were taken in this region but the short 
entry length, the tuft-probe observations and the low turbulence levels obtained at the 
measuring stations in the absence of the grids suggest that any downstream influence 
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FIGURE 10. Turbulence measurements by Uzkan & Reynolds (1967). (a)  3 (from Uzkan & 
Reynolds 1967, figure 13). ‘ii = 0.315ftss1: 0, z / M  = 7.5; V, 12.5; x ,  15.0; +, 17-5. G = 0-330 
fts-’: 0,  x / M  = 11-5. ( b )  L, (from Uzkan & Reynolds 1967, figure 18): A ,  z / M  = 7.5. 

is negligible. Graham’s and Petty’s measurements near a flat plate are subject to 
similar uncertainties about the downstream effects of distortion near the leading edge. 

Uzkan & Reynolds presented variances, scales and spectra of the longitudinal 
component obtained in a nominally shear-free water flow at a mesh Reynolds number 
RM 2: 5000. Figure 10 reproduces their figure 13 (with the abscissa scale corrected for 
misprints) and their figure 18. In  contrast to the present results, the p-component 
profiles decline monotonically towards the wall, Uzkan & Reynolds took this as 
confirmation of a satisfactory matching of the wall and stream speeds and inferred 
a viscous scaling for the wall layer, with thickness 8, 2: l-8(xfv/U)~, where x’ is 
measured from the start of the layer. Their integral-scale profile is comparable with 
those currently obtained but the absolute values appear to be small, giving 
LJM 2: 0.12. An expected value obtained from the survey of Naudascher & Farrell 
(1970) and giving L,/M N 0.4 at x /M = 16 indicates that for Uzkan & Reynolds’ 
study Sv/Lue 0.25. The current results have shown that the total wall-layer thickness 
is approximately 2L,, so i t  appears that for Uzkan & Reynolds’ experiment there was, 
as they suggested, a substantial outer kinematic field. Using the above expression for 
S,, we find that in the present experiment, in which Ral was approximately 20 times 
Uzkan & Reynolds’ value, SV/Lue EJ 0.05. This implies that all our measurements were 
taken outside the viscous layer, which is consistent with the results obtained. Hunt & 
Graham discussed a generally successful reconciliation of the two sets of results with 
arguments stemming from their two-layer analysis. However, their solution does not 
adequately describe the evolution of the u’ component observed in the present experi- 
ment, and we now consider this development. 
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In  the absence of gradients of mean velocity, the Reynolds mean momentum 
eauations are 

a -  a -  a a -  
-((13+uf2)+-u’v‘=O, -((13+7q+-tM=O, ax a Y  aY ax 

where 2, is the ‘kinematic’ pressure. Noting that the spatial derivatives a/ax and a/ay 
operating on the time-averaged variables are of orders [ ( 3 ) 4 / i i ]  L;; and L&? and 
neglecting terms O(T2/T2), these equations may be combined to give 

a -  - a: a - -  
-(u‘Z-v’2)+-uv = -(u;2-v;2). 
ax a Y  ax 

It is easily demonstrated that this equation holds for any irrotational mean velocity 
field. However, without additional information it merely relates three components 
of the Reynolds-stress tensor. Values of UIZI) calculated from the current experimental 
data were found to be too small to be reliable. We adopt the strategy of assuming a 
sufficiently large Reynolds number Re = (a* Lue/v for validity of Hunt & Graham’s 
solution for the vf component, which is supported by the present results, and then 
consider the implied limiting responses of and n. This essentially heuristic 
procedure indicates a plausible closure equation for in terms of the known vTfield, 
with magnitude dependent on Re; the latter is presumably the dominant parameter 
distinguishing Uzkan & Reynolds’ experiment from the present one. We can then 
calculate the implied evolution of the field. 

The continuity equation suggests that (V’2)h (y = 6,) - 6,(2)*/L,,  so for a substan- 
tial outer region it is necessary that Sv/Lue < 1 and for the vf field to be essentially 
kinematic everywhere, ( a 4 S 2 / v L ,  > 1,  or Re (6,/Lw)2 > 1.  Uzkan & Reynolds’ 
experimental results show Sv/Lue 1: 0.25 at Re 1: 100, while the present experiment 
with grid A gives Sv/Lue 1: 0.05 a t  Re 2: 2000 and that with grid B gives SvILue 2: 0.04 
at Re 2c 4000. It appears that for all the experiments JV/Lue -N (6/Re)l. 

If a is sufficiently small for the approximation 

a -  - a -  - - (UP2 - 4 2 )  = - (21’2 - 4 2 )  
ax ax 

to be valid then the decay rate ofU‘2 is reduced near the wall, which is consistent with 
the present results. On the other hand, Uzkan & Reynolds’ results for the outer region 
show uf2 21 uL2, in which case the equation approximates to 
- -  

a -  a -  - - u v = - (vf2 - VL”. 
a Y  ax 

Taking both these limits into consideration, we propose as a closure equation 

a -  a -  - 
aY ax 
- u’v’ = f(Re) - (vf2 - vL2), 

where f(Re+ m)+ 0 and f(Re 1: 100) N 1.  For an estimation of the form of f(Re),  we 
assume a viscous scale for &? given by (u’~v‘~)~ (y = 6,) 1: uL2Sv/L,, which is pro- 
portional to Re-&?. This suggests that the magnitude of =is an order smaller than 
in a fully turbulent shear layer and so accounts for the unreliability of the present 

-- - 
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length-scale growth for the turbulence generated by grid A compared with the Kolmogorov 
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experimental values. The assumed scaling indicates that an appropriate choice is 
f K Re-H and substitution in the closure proposal yields 

a -  a -  - 
aY ax 
- dd N 1ORe-H - (@ - @). 

Figure 11 (a) shows the calculated values of (U'2)*/ii at x / M  = 25 for Re = 2000 
obtained using the faired experimental profile at x /M = 22 as the initial curve. 
Excellent agreement with the experimental resultsis demonstrated. Figure 11 (b )  shows 
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that, in the external stream, the variances and the length scales of the turbulence 
generated by grid A are described near the test stations by the Kolmogorov ‘+Q ’ energy 
decay law (Comte-Bellot & Corrsin 1966) with a single virtual origin at x /M 21 12. 
Extrapolation suggests that the external-stream variances found at x/M = 13 with 
grid B would be obtained a t  x / M  = 18 with grid A and that the length scale would 
be 0.5M. As a further test of the model, figure 11 (a) shows the inferred profile a t  
x / M  = 18 calculated from the data at x /M = 22, and the experimental results obtained 
with grid B. The normal co-ordinate y has been stretched in an effort to accommodate 
the different length scales. Although a comparison is not strictly admissible, the model 
follows the experimental trends : the amplification and the boundary-region thickness 
of the u‘ component are reduced. 

The u’-component spectra demonstrated that the transferred energy resides in the 
intermediate and high frequency ranges. A reduction of this energy with decreasing Re, 
as supposed in the model, is consistent with these spectral observations. The model 
does not explain the departures from the theory of the w‘ component, but the spectra 
showed that these occur mainly in the intermediate and high frequency ranges, so 
they may be related to the development of the u’ component. 

5. Conclusions 
At high Reynolds numbers, the outer region of a turbulent boundary region with 

zero mean shear scales on the external turbulence parameters. The normal fluctuating 
component is inhibited within a layer of characteristic thickness about twice the 
external longitudinal integral length scale. The profiles of this component are in good 
agreement with the theoretical solution given by Hunt & Graham. The amplification 
of the longitudinal component is also in accordance with the theory and in marked 
contrast to the essentially viscous response observed by Uzkan & Reynolds at  about 
one-tenth of the present mesh Reynolds number. In  terms of the microscale Reynolds 
number R, = (z)h h/v,  the present experiment, with R, 2: 120, as opposed to Uzkan & 
Reynolds’ experiment, with R, N 25, should be typical of all high Reynolds number 
flows, with R, > 100, say. The longitudinal component shows a downstream develop- 
ment not predicted by the theory but plausibly described by a model of the dynamical 
equation incorporating Uzkan & Reynolds’ experimental results. The lateral com- 
ponent appears to be only weakly influenced by the wall and its behaviour remains to 
be explained. 

The integral length scales of the three fluctuating components are generally in 
agreement with the theoretical solution, with the exception of the longitudinal com- 
ponent near the wall. The latter is smaller than is predicted. 

The spectra tend to confirm the prima facie expectation that the smaller eddies will 
be less influenced by the wall than the larger ones. The normal-component spectra are 
in good agreement with the theory. The increase in the longitudinal-component 
variance is associated with the intermediate and higher frequency ranges, as is the 
reduced variance of the lateral component. The generally reasonable agreement in the 
low frequency ranges is satisfying since the premises of the theory, such as second-order 
weak interactions, are more adequately met. 
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